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We present a study of palladium by the NRL tight-binding �TB� method. We constructed a set of TB
parameters by fitting to first-principles data for the electronic energies of face-centered cubic �fcc� and body-
centered cubic �bcc� Pd as a function of volume. This TB Hamiltonian was then used to calculate phonon
frequencies and elastic constants. Our calculations show good agreement with experiments and demonstrate the
efficiency of the NRL-TB scheme. In addition, we performed tight-binding molecular dynamics simulations to
calculate the density of states, coefficient of thermal expansion, mean-squared displacement, and energy of
vacancies formation at finite temperature.
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I. INTRODUCTION

First proposed four decades ago in a seminal paper by
Slater and Koster,1 the tight-binding �TB� method has proven
to be a very powerful approach for calculating the total en-
ergy, electronic energy bands, and electronic densities of
states for a large number of various solid-state structures.2

The TB method very efficiently and accurately reproduces
first-principles data for the electronic band structure and den-
sity of states �DOS�.3 Recently the NRL-TB method has
been developed to provide transferability between different
structures.2 In this method the parameters of the Slater-
Koster Hamiltonian are fit to reproduce a first-principles da-
tabase of not only the band structures but also the total en-
ergies for several crystal structures differing in volume or
symmetry.4,5 The NRL-TB method has been advanced to per-
form molecular dynamics �MD� simulations.6 Tight-binding
molecular dynamic capabilities have opened possibilities for
calculations at finite temperatures by relaxing the positions
and determining velocities together with forces on moving
atoms in a large supercell.

In this paper we present the results of TB calculations for
palladium with a static atomic distribution and with molecu-
lar dynamic simulations of atomic motion for a wide range
of temperatures, from 0 to 900 K. We apply static and dy-
namic methods to calculate the structural and electronic
properties of bulk palladium and total energy of clusters of
various sizes. We find a variety of electronic and structural
properties including electron energies, elastic constants, pho-
non frequencies, vacancy formation energies, and mean-
squared displacements.

II. STATIC CALCULATIONS

A. NRL-TB method

The NRL-TB method is based on fitting the onsite terms,
the two-center Hamiltonian, and the overlap parameters to
the electronic eigenvalues and total energies provided by
first-principles calculations. For atom i, the on-site TB pa-
rameters are defined as

hil = al + bl�i
2/3 + cl�i

4/3 + dl�i
2, �1�

where coefficients al, bl, cl, and dl �l=s, p, or d� are the
fitting parameters and the atom density �i has the form:

�i = �
j

exp�− �2Rij�F�Rij� , �2�

where the sum is over all atoms j within a range Rc of atom
i, � is a fitting parameter, and F�Rij� is a cutoff function. In
the two-center approximation, the hopping integrals depend
only on the angular momentum dependence of the orbitals,
ll�u �ss�, sp�, pp�, pp�, sd�, pd�, sd�, dd�, dd�, and
dd�� and the distance between the atoms. The hopping pa-
rameters for both the Hamiltonian and overlap matrices have
the form

Hll�u�R� = �ell�u + f ll�uR + gll�uR2�exp�− qll�u
2 R�F�R� , �3�

where R is the separation between the atoms and
�ell�u , f ll�u ,gll�u ,qll�u� are the fitting parameters. This form of
the TB parameters allows transferability to different crystal
structures and atomic configurations.

We first find the set of the TB parameters by fitting the
electronic energies for a static distribution of atoms located
at fixed lattice coordinates. For a monatomic system with the
s, p, and d orbitals included into a basis, the NRL-TB pa-
rametrization method requires 93 parameters to reproduce
the electronic band structure and the total energy available
from the first-principles calculations in a wide range of lat-
tice constants for various lattice structures.2 We have found
the set of TB parameters fitting the linearized augmented
planewave �LAPW� calculations for the bcc using 55 k
points and the fcc using 89 k points in the irreducible Bril-
louin zone. The latter has a minimum of the total energy at
lattice constant a=3.847 Å that corresponds to vc=a3 /4
=14.24 Å3 of the volume of the primitive cell. The lattice
constant is fit to the LAPW value of 3.85 Å, which under-
estimates by 1% the experimental value of 3.89 Å. The re-
sulting nonorthogonal set of parameters obtained from the fit
predicts the electronic band structure and the total energy for
simple cubic �sc� and hexagonal close-packed �hcp� struc-
tures which were not fitted. Figure 1 shows total energy plot-
ted as a function of the primitive cell volume for the fcc, bcc,
sc, and hcp structures. Each structure has its own minimum
of the total energy. The minimum of the fcc structure, as
expected, is the lowest one followed by the hcp, bcc, and sc
structures. The sc structure has the highest energy at the
minimum. The hcp structure is shown for the c /a ratio of
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1.72 with the lowest minimum for the hcp structures. The TB
calculations are compared with the LAPW results with al-
most perfect match for the bcc and fcc structures included
into fit. Good agreement for the sc and hcp structures dem-
onstrates transferability of the parameters to other structures
which were not included into fit. This set of the parameters
also works well for the computation of the phonon frequen-
cies and the elastic constants. The same parameters are also
used to perform molecular dynamics simulations.

B. Phonon frequencies

Phonon frequencies and elastic constants provide infor-
mation about the derivatives of the energy with respect to the
displacement of the atoms from their equilibrium lattice po-
sitions. We have found the phonon frequencies by the frozen
phonon method7 where a unit cell is commensurate with the

wave vector of the phonon, and the displacements of atoms
are chosen according to the polarization and the phase of the
phonon mode. In the harmonic approximation, the phonon
frequencies can be determined from the second derivatives of
the total energy as a function of the displacement and the
energy variation can be written in the form7

Uharm =
1

2 �
R,R�,�,�

x��R�����R − R��x��R�� , �4�

where x� is the deviation from equilibrium of atom � on unit
cell associated with lattice vector R and ����R−R�� is the
force constant matrix. The higher orders are responsible for
anharmonicity8 which we investigate in the frame of the
tight-binding molecular dynamics �TBMD� methods.

Table I shows the phonon frequencies of palladium at
several high-symmetry points in the fcc Brillouin zone.9,10

The calculated frequencies are compared to the experimental
values.11 The overall agreement is very good, with a ten-
dency of larger divergence for longitudinal modes than for
the transverse ones; the difference ranges from 0.3% to 18%.
It appears that with the exception of the �1 and 	2 points, all
calculated frequencies are higher than experiment, indicating
a systematic shift in the higher frequencies. The shift can be
possibly explained by the smaller lattice constant compared
to the experimental value of and variation in the phonon
frequency with the temperature,11 indicating that with the
current TB parameters the energy variation is slightly stron-
ger with the displacement. We repeated our calculations of
the phonon frequencies at the experimental value of the lat-
tice parameter which is 1% higher than the TB equilibrium
value. The results did not show significant differences.

C. Elastic constants

The calculation of the elastic constants can serve as a
sensitive test for the TB parameters because the calculations
depend on small differences between the equilibrium ener-
gies and the energy with the strain. The total energy changes
by an amount,12

TABLE I. Phonon frequencies of palladium �in tetrahertz�

Coordinates Symmetry Polarization NRL-TB Experiment11 % Difference

�0,0,4� �

4a �1 Longitudinal 4.19 4.76 12%

�5 Transverse 3.14 3.13 0.3%

�0,0,8� �

4a X3 Longitudinal 7.42 6.72 10%

X5 Transverse 4.68 4.59 2%

�0,4,8� �

4a W2 Longitudinal 4.65 4.19 11%

W5 Transverse 6.04 5.55 9%

�4,4,0� �

4a 	1 Longitudinal 6.21 5.91 5%

	2 Transverse 2.81 2.88 2%

	3 Transverse 4.71 4.45 6%

�4,4,4� �

4a L2 Longitudinal 8.06 6.85 18%

L3 Transverse 3.33 3.20 4%
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FIG. 1. �Color online� Total energy of various palladium struc-
tures: lines show TB results for fcc �solid red�, bcc �dashed blue�,
and hcp�dotted green� with c /a=1.72; symbols show LAPW data
for fcc �closed squares�, bcc �open squares�, and hcp �open circles�.
Inset: total energy of fcc, bcc, and sc structures; open circles show
LAPW data for sc.
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E�ei� = E0 − P�V��V + �
i=1

6

�
j=1

6

Cijeiej/2 + O�ei
3� , �5�

where V is the volume of undistorted lattice, P�V� is the
pressure, �V is the change in the volume of the lattice due to
the strain, and ei are the strain tensor components. In general,
there are 21 elastic constants Cij. This number is reduced to
three for the cubic lattices �fcc, bc, and sc�. Applying the
volume-conserving orthorhombic strain,

e1 = − e2 = 
 ,

e3 = 
2/�1 − 
2� ,

e4 = e5 = e6 = 0, �6�

we obtain the tetragonal shear modulus �C11−C12� /2 from
Eq. �5�, which can be written as

�E�
� = �E�− 
� = V�C11 − C12�
2 + O�
3� . �7�

Similarly, by applying the volume-conserving monoclinic
strain,

e6 = 
 e3 = 
2/�4 − 
2� ,

e1 = e2 = e4 = e5 = 0, �8�

we find the trigonal shear modulus C44 from Eq. �5� that
takes the form

�E�
� = �E�− 
� = VC44

2/2 + O�
3� . �9�

The third independent elastic constant can be calculated from
the relation to the bulk modulus

B = �C11 + 2C12�/3. �10�

Using the energy found for various volumes �Fig. 1�, we can
calculate the bulk modulus near the minimum of the fcc
structure as B=−V ·�P /�V.

Table II shows the results of the TB calculations in com-
parison with the experimental data13 and our LAPW results.
Following the LAPW with less than 10% deviation, the
monoclinic strain and trigonal shear modulus are below the
experimental values and the bulk modulus is about 15%
larger than the experimental value.

III. ENERGY OF CLUSTERS

To further demonstrate the robustness of our TB Hamil-
tonian and capabilities of the NRL-TB method we found the

energy of Pd clusters consisting of various numbers of atoms
arranged in the fcc structure. We calculated energy per one
atom for static clusters with sequentially filled shells of
neighbors equally distant from the central atom of the clus-
ter, including 13, 19, 43, 55, 79, 141, 177, 225, 381, 555,
767, and 935 atoms. The results are shown in Fig. 2. The
energy decreases with size as expected asymptotically ap-
proaching to the bulk limit of 0 mRy.

IV. MOLECULAR DYNAMICS SIMULATIONS

Using the NRL-TB parameters we performed the MD
simulations for a supercell of Pd containing 64 atoms that is
obtained by repeating the primitive cell four times along
each of the primitive lattice directions. The simulations were
performed for 3000 steps with a time step of 2 fs. Figure 4�a�
shows the supercell at the start of the simulation. Initially, the
atoms are placed on the fcc lattice with random velocities
with a Boltzmann distribution function for a temperature of
2T. Very quickly �see Fig. 3�, in approximately 70 fs �35

TABLE II. Elastic constants for palladium �in GPa�.

NRL-TB LAPW Expt.a

1
2 �C11−C12� 28.23 29.5b 29.00

C44 60.52 65b 71.05

B 223.07 224.9 195.05

aReference 13.
bReference 14.
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FIG. 2. Total energy per one atom of fcc Pd clusters.
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FIG. 3. Change in temperature in MD simulations of 64 palla-
dium atoms with time increment of 2 fs/step.
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steps�, the atomic motion slows down �Figs. 4�b� and 4�c�� to
the average velocities corresponding to the equilibrium at
temperature T. The fluctuations are reduced to the normal
equilibrium scale approximately in a picosecond time range
�Fig. 4�d��.

A. Coefficient of thermal expansion

We applied the TBMD method to investigate the anhar-
monicity of the lattice energy. Additional information about
the anharmonicity can be deduced from the calculations of
the coefficient of thermal expansion and the mean-squared
displacement. To evaluate qualitatively the anharmonicity we
consider the following simple equation for the change in the
energy with the displacement of an atom from its equilibrium
position:

U�x� =
1

2
�x2 −

1

3
�x3 +

1

4
�x4, �11�

where we included the anharmonic terms up to the fourth
order of the displacement, x. The first term is the harmonic
part; the second and the third terms are responsible for the
thermal expansion coefficient and the mean-squared dis-
placement. The probability of an atom to deviate from its
equilibrium can be defined as

P�x� = � �

2�kT
�1/2

e−U�x�/kT. �12�

Assuming that the anharmonic terms are small, we expand
the probability

P�x� = � �

2�kT
�1/2�1 +

1

3kT
�x3 −

1

4kT
�x4	e−�x2/2kT

�13�

and find the average displacement as


x� =
�

3kT
� �

2�kT
�1/2�

−





x4e−�x2/2kTdx =
�k

�2 T , �14�

where only the second term of odd order is included. The
linear coefficient of thermal expansion is the average dis-
placement per unit length and temperature

�L =
�k

a�2 . �15�

The linear coefficient can be found from the TBMD simula-
tions for various temperatures. We first calculate the energy
per unit volume or the pressure in the lattice and determine
the coefficient from dP /dT=3�LB where B is the bulk
modulus.6 The pressure changes linearly with the tempera-
ture within the entire range of our calculations with the slope
of the linear fit 5.52 MPa/K. For the bulk modulus of 180
GPa, we find �L=10−5 K−1 that is approximately 10%
smaller than the experimental value.15 This difference is con-
sistent with the higher values of the phonon frequencies and
�2 which are proportional to each other. Using Eq. �15�, we
estimate the ratio �k /�2 as 3.8·10−5 Å /K.

B. Mean-squared displacement

We have determined the atomic mean-squared displace-
ment of the Pd atoms for various temperatures using the
atomic positions recorded in the process of the MD simula-
tion. In the range of relatively low temperatures, the mean-
squared displacement linearly changes with the temperature
�Fig. 5�. In this range, the results of calculations are in good
agreement with the experimental data.16,17 At higher tem-
perature, the mean-squared displacement is sublinear. This
can be explained by an increasing anharmonicity of atomic
vibrations at higher temperature.

As with the coefficient of thermal expansion, we similarly
find an average of the displacement squared

FIG. 4. �Color online� Evolution of palladium supercell consist-
ing of 64 atoms: �A� initial fcc structure at T=1800 K; �B� 4 fs
elapsed time at T=1778 K; �C� 16 fs elapsed time at T=1392 K;
and �D� 1898 fs elapsed time at T=955 K.
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FIG. 5. �Color online� Mean-squared displacement for palla-
dium: calculations �closed squares� and experiment �Ref. 16� �open
squares� with linear extrapolation �dashed line�.
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x2� = � �

2�kT
�1/2�

−



 �x2 −
1

4kT
�x6 +

1

9k2T2�2x8	e−�x2/2kTdx

=
kT

�
�1 −

15�

4�

kT

�
+

35�2

3�2

kT

�
� , �16�

where we use only the even orders of the energy expansion
in Eq. �11�.

At relatively low temperature, the mean-squared displace-
ment is a linear function of temperature with the slope of
k /�=1.87·10−5 Å2 /K close to the slope of experimental
data. The mean-squared displacement begins deviating from
the linear trend at temperatures above the Debye temperature
�D=274 K �Ref. 18� that is consistent with the anharmonic
changes of the phonon frequencies.11 Both the cubic and
quartic terms of energy in Eq. �11� give contributions to the
anharmonicity of the mean-squared displacement. The coef-
ficient originating from the cubic term is 35�2 / �3�2�
=48 Å−2 that is smaller than its quartic counterpart
15� / �4��=222 Å−2. We can conclude that the quartic coef-
ficient is apparently excessive since one would expect the
anharmonic deviations to become relatively large at higher
temperatures approaching to the melting point where the dis-
placement is comparable to the lattice constant.

C. Density of states

We have determined the electronic DOS and the position
of the Fermi level for various temperatures in the range of
0–900 K. The density of states is found by counting the
number of eigenvalues within a bin of 0.1 eV width over all
k points included in the calculations.

At zero temperature the DOS of palladium has a sharp
maximum near the Fermi level �Fig. 6� which is approxi-
mately the energy where the d bands end. The peaks flatten
as the temperature increases. Apparently this sharp change in
energy requires a higher number of k points for the molecu-
lar dynamic simulations to increase the precision in the cal-
culations of forces. We determined that at least 108 k points

were needed for the supercell of 64 atoms to provide stability
of the MD simulations. The TBMD method substantially re-
duces the computational cost in comparison with first-
principles methods which currently appear to be not practical
for such massive calculations.

Figure 6 shows the DOS of palladium for 0 and 900 K
with arrows pointing to the position of the Fermi level vary-
ing with the temperature: EF�T�. At zero temperature, the
Fermi level is determined by

�
−


EF�0�

D�E,0�dE = Ne, �17�

where D�E ,0� is the density of states at zero temperature and
Ne is the total number of electrons populating the energy
states below the Fermi level. This implies that the population
of the electrons is the step function of energy,

f�E� = 
1, E � EF�0�
0, E � EF�0� � . �18�

The step function is a special case of the Fermi-Dirac distri-
bution function

f�E,T� = �e�E−EF�T�/kT� + 1�−1, �19�

which turns into Eq. �18� at T=0. For temperatures above
zero, both the density of states and the Fermi energy vary
with the temperature, leaving the total number of electrons
unchanged. Instead of Eq. �17�, the integral for the total
number of electrons is

�
−





D�E,T�f�E,T�dE = Ne. �20�

This integral determines the position of the Fermi level as a
function of temperature.19 Normally, if the DOS is a rela-
tively smooth function almost not changing with tempera-
ture, the Fermi level moves to a lower position with an in-
crease in temperature. Figure 7 shows that the DOS changes
with temperature at the position of the Fermi level. One rea-
son for this is the change in the electronic energy levels and
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FIG. 6. �Color online� Density of states at two temperatures: 0
and 900 K.
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consequently in the DOS with the vibration of atoms in the
lattice which become more pronounced at higher tempera-
tures. In palladium the DOS varies sharply near the Fermi
level, and therefore the Fermi level shifts to a higher position
with the depopulation of the electronic states at higher tem-
peratures.

D. Vacancy formation energy

We have applied the TBMD simulations via the conjugate
gradient method for the calculations of vacancy formation.
The TBMD methods make it possible to find an energy of
vacancy formation in a relatively large supercell to reduce
the interaction between the vacancies. The formation energy
of M vacancies in a supercell of N atoms is

Evf = E�N − M,M� −
N − M

N
E�N,0� , �21�

where E�N ,0� is the total energy of the supercell containing
all N atoms and E�N−M ,M� is the energy of the supercell
with N−M atoms and M vacancies. After M atoms are re-
moved from the supercell, the supercell relaxes. The atoms
are shifted from their normal lattice positions to form M
stable vacancies.

We calculated the formation energies of a single vacancy
and a divacancy. To improve the convergence, we increased
the number of k points to 864 for the TBMDK simulations of
the 64 atoms supercell. We have found that the formation
energy of the single vacancy is 1.27 eV. The energy forma-
tion of the divacancy strongly depends on the position of the
vacancies �see Fig. 8� varying from 2.81 eV for the vacancies
at the nearest sites along the body diagonal down to 2.53 eV
for the vacancies at the nearest sites on the cube side. The
minimum of the divacancy formation energy, 2.53 eV, is
slightly lower than the formation energy of two single vacan-
cies 2.54 eV, indicating that two vacancies will likely form
the divacancy.

V. CONCLUSIONS

In summary, we have obtained a set of TB parameters for
palladium by fitting to LAPW data for the electronic energies
of fcc and bcc structures. The resulting TB Hamiltonian was
used in static calculations to predict the energy of other
structures such as the sc and hcp as well as to calculate

elastic constants and phonon frequencies. We also performed
MD simulations from which we obtained the vacancy forma-
tion energies, mean-squared displacements, coefficient of
thermal expansion, and temperature dependence of the den-
sity of states. The MD calculations exploited the computa-
tional speed of the TB method and made it possible to per-
form calculation of 64 atoms in the unit cell with 108 k
points and for 3000 MD steps. Our runs used parallelization
of the MD code for up to 32 nodes on an SGI Altix com-
puter. A typical run took approximately 30 h. We expect that
a similar calculation using one of the first-principles codes
would be more than a factor of 10 slower.

Various characteristics calculated by TB and TBMD
methods show good agreement with experimental data. The
deviations from experiments possibly originate from under-
estimation of the lattice constant by the LAPW and slightly
excessive anharmonicity of the TB Hamiltonian.
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